

Communication

Synthesis and Characterization of a Coordinated Oxoborane: Lewis Acid Stabilization of a Boron–Oxygen Double Bond

Dragoslav Vidovic, Jennifer A. Moore, Jamie N. Jones, and Alan H. Cowley

J. Am. Chem. Soc., **2005**, 127 (13), 4566-4567• DOI: 10.1021/ja0507564 • Publication Date (Web): 11 March 2005 Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 10 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 03/11/2005

Synthesis and Characterization of a Coordinated Oxoborane: Lewis Acid Stabilization of a Boron–Oxygen Double Bond

Dragoslav Vidovic, Jennifer A. Moore, Jamie N. Jones, and Alan H. Cowley*

Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-0165

Received February 4, 2005; E-mail: cowley@mail.utexas.edu

Despite the use of bulky aryl,¹ amido,² or alkyl³ substituents, oxoboranes (RB=O) have so far defied attempts at isolation and structural characterization. Convincing evidence has, however, been presented for the intermediacy of such species on the basis of a variety of elegant trapping experiments. We report the first synthesis and structural assay of a Lewis acid-stabilized oxoborane.

In the aforementioned experiments, the fate of the ephemeral oxoboranes in the absence of trapping agents was oligomerization^{1a,c,2,3} or insertion of the oxoborane oxygen atom into a C–H bond of the R ligand.^{1b,3} To obviate the possibility of a C–H insertion and minimize the opportunity for oligomerization, we selected the C₆F₅-substituted β -diketiminate [HC(CMe)₂(NC₆F₅)₂]⁻ (L⁻)⁴ as the supporting ligand. As summarized in Scheme 1, treatment of the

Scheme 1

protonated ligand, LH, with MeAlCl₂ resulted in a high yield (82.9%) of LAlCl₂ (1), which was characterized by HRMS, NMR, and single-crystal X-ray diffraction.⁵ Only two (β -diketiminato)-AlCl₂ complexes have been structurally characterized previously, namely, [HC(CMe)₂(p-tolyl)₂]AlCl₂⁶ and [HC(CMe)₂(N-2,6-i- $Pr_2C_6H_3)_2]AlCl_2$.⁷ The structure of **1** bears a closer resemblance to that of the former in the sense that the C_3N_2 ring is planar. Compound 1 undergoes an exchange-autoionization reaction with BCl₃ to afford the salt [LBCl][AlCl₄] (2) in 94.9% yield. This salt is highly water-sensitive, and characterization is based on HRMS of the cation [LBCl]⁺ and multinuclear NMR of the salt. Thus, the characteristic peak⁸ for [AlCl₄]⁻ was detected at δ 102.3 in the ²⁷Al NMR spectrum, and the ¹H and ¹⁹F NMR spectra are consistent with those anticipated for the β -diketiminato ligand L⁻. The ¹¹B chemical shift of δ 18.7 is similar to the values of δ 23.05 and 32.16 reported by Kuhn et al.⁹ for [L"BF][BF₄] and [L"BCl][AlCl₄],

Figure 1. ORTEP drawing for LBO → AlCl₃ (thermal ellipsoids set at 30%). Selected distances [Å] and angles [°]: B(1)-O(1) 1.304(2), O(1)-Al(1) 1.720(1), B(1)-N(1) 1.466(2), N(1)-C(4) 1.356(2), C(4)-C(3) 1.388-(2), C(3)-C(2) 1.386(2), C(2)-N(2) 1.362(2), N(2)-B(1) 1.470(2), B(1)-O(1)-Al(1) 169.2(1), Cl(1)-Al(1)-Cl(2) 112.97(3), Cl(1)-Al(1)-Cl(3) 108.34(3), 123.2(1), O(1)-B(1)-N(2) 122.8-(1), B(1)-O(1)-Al(1) 169.2(1), B(1)-N(1)-C(4) 123.9(2), N(1)-C(4)-C(3) 118.5(1), C(4)-C(3)-C(2) 123.2(1), C(3)-C(2)-N(2) 119.1(1), C(2)-N(2)-B(1) 122.1(5).

respectively ($L'' = [HC(CMe)_2(NMe)_2]^{-}$). Further support for the proposed formulation for 2 stems from the observation that 1 reacts with PhBCl₂ to form [LBPh][AlCl₄] (4), which has been structurally authenticated⁵ and shown to possess a similar cationic structure to that of [HC(CMe)₂(N-2,6-*i*-Pr₂C₆H₃)₂BPh][Al₂Cl₇] (5).¹⁰ Treatment of 2 with the stoichiometric quantity of H₂O in CH₂Cl₂ results in the formation of 6, the AlCl₃ adduct of the oxoborane LB=O. Compound 6 has been characterized by HRMS, NMR, and singlecrystal X-ray diffraction.⁵ The X-ray data confirm the spectroscopic indications and reveal the attachment of AlCl₃ to the oxygen atom of the oxoborane (Figure 1). The B-N(1)-C(4)-C(3)-C(2)-N(2)ring is planar, as reflected by the fact that the sum of internal bond angles is 719.9(1)°. The average N-C (1.359(2) Å) and C-C (1.387(2) Å) bond lengths are very similar to those in the boron cation 4^+ (1.369(9) and 1.385(10) Å, respectively).¹⁰ However, the B-N bond length in 6 (1.468(2) Å) is slightly longer than that in 4^+ (1.440(9) Å), as might be expected on the basis of the presence of a formal +1 charge on boron in the latter. The trigonal planar geometry at boron is indicated by the sum of angles at this center (360.0(1)°). The B-O and O-Al bond lengths are 1.304(2) and 1.720(1) Å, respectively. It is difficult to make an assessment of the boron-oxygen bond order solely on the basis of length because examination of the Cambridge Crystallographic Data Base reveals that there is a pronounced dependence on the stereoelectronic characteristics of the other boron substituents. The B-O separations in singly bonded N₂B-O fragments (diaza- and triazaboroles)¹¹ span the range of 1.354(5)-1.365(4) Å and are thus considerably longer than that in 6. The B-O-Al angle in 6 (169.2(1)°) is

Figure 2. Selected MOs for LBO \rightarrow AlCl₃ (6') and LBO (7).

comparable to the value of 163.76(2)° reported by Roesky et al.¹² for the interesting monoalumoxane L'AlO \rightarrow B(C₆F₅)₃ (L' = [HC(CMe)₂(NCH₂NEt)₂)₂]⁻), which features a four-coordinate aluminum atom.

To gain more insight into the electronic structure of 6, in general, and the nature of the boron-oxygen bond, in particular, DFT calculations were carried out at the B3LYP level of theory using the 6-311+G(d) basis set. The input coordinates for the geometry optimization were generated from the X-ray crystallographic data. The resulting structure (6') is shown in Scheme 2. Analogous

Scheme 2

calculations were performed on LB=O (7) and are included in Scheme 2. Reference to Scheme 2 and the Figure 1 caption reveals that the computed metrical parameters for 6' lie within 1% of the experimental values for 6, with the exception of the O-Al distance and the B-O-Al angle for which the deviations are 2.8 and 2.9%, respectively. Regarding the latter deviation, the DFT calculations indicate that the B-O-Al angle deformation energy is small and that, for example, the difference in energy between $\angle B - O - Al =$ 174.11 and 180.0° is only 0.72 kcal/mol. In terms of the C₃N₂B ring geometry, the major changes that take place when AlCl₃ is coordinated to the oxoborane 7 are widening of the B-N-C angle and narrowing of the N-B-N angle. The C₃N₂B rings of 6' and 7 are both planar. The computed B-O distance for the free oxoborane 7 is 1.292 Å, and the fact that this distance increased by only 1.9% upon coordination to AlCl₃ is suggestive of the retention of considerable double bond character in 6'. For both 6' and 7, the LUMO is π^* in nature (Figure 2). The HOMO of **6'** comprises the AlCl₃ chlorine lone pairs, while that of **7** is principally oxygen lone pair in character. The HOMO-LUMO gaps for 6' and 7 are 83.38 and 91.18 kcal/mol, respectively. The B–O π bond in 7 is evident in the HOMO-6 orbital (but note that there is also considerable participation by nitrogen 2p orbitals). In the case of 6', the π component of the B-O bond does not feature contributions from these nitrogen 2p orbitals.

In summary, we have prepared and structurally characterized the first example of a Lewis acid-coordinated oxoborane. DFT calculations indicate that the boron-oxygen functionality of this complex retains considerable double bond character.

Acknowledgment. We are grateful to the National Science Foundation (CHE-0240008) for support.

Supporting Information Available: Experimental details, spectroscopic data for 1, 2, and 6, X-ray crystallographic data (CIF) for 1, 4, and 6, and DFT calculation details for 6' and 7. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Pachaly, B.; West, R. J. Am. Chem. Soc. 1985, 107, 2987. (b) Groteklaes, M.; Paetzold, P. Chem. Ber. 1988, 121, 809. (c) Ito, M.; Tokitoh, N.; Okazaki, R. Tetrahedron Lett. 1997, 38, 4451. (d) Tokitoh, N. Main Group Chem. News 2000, 7, 27.
 (2) Hanecker, E.; Nöth, H.; Weitelmann, U. Chem. Ber. 1986, 119, 1904.
 (3) Paetzold, P.; Neyses, S.; Géret, L. Z. Anorg. Allg. Chem. 1995, 621, 723.
- (4) Panda, A.; Stender, M.; Wright, R. J.; Olmstead, M. M.; Klavins, P.; Power, P. P. Inorg. Chem. 2002, 41, 3909.
- (5)All X-ray data were collected at 153 K on a Nonius-Kappa CCD An Aray data were concerted at 155 word a homa require corrected at 155 word at 155 methods and the correct at 155 methods reflections = 4525 ($R_{int} = 0.080$), absorption coefficient $\mu = 0.469$ mm⁻ final *R* indices $R_1 = 0.0776$, $wR_2 = 0.1549$. Crystal data for 4: C₂₃H₁₂-AlBCl₄F₁₀N₂, orthorhombic, space group *Pnna*, a = 25.588(5) Å, b = 15.086(3) Å, c = 7.155(1) Å, V = 2762.1(9) Å³, Z = 4, $\rho_{calcd} = 1.650$ g cm⁻³, $2\theta_{max} = 59.96^{\circ}$, Mo K α ($\lambda = 0.71073$ Å), total reflections collected $\mu = 0.547 \text{ mm}^{-1}$, final *R* indices $R_1 = 0.0048$, $wR_2 = 0.2134$. Crystal $\mu = 0.547$ mm⁻¹, final *R* indices $R_1 = 0.0848$, $wR_2 = 0.2134$. Crystai data for **6**: $C_{17}H_7AIBCl_3F_{10}N_2O$, monoclinic space group $P2_{1/c}$, a = 11.110(5) Å, b = 13.318(5) Å, c = 15.211(5) Å, $\beta = 104.744$ (5)°, V = 2176.6(1) Å³, Z = 4, $\rho_{calcd} = 1.799$ g cm⁻³, $2\theta_{max} = 55^{\circ}$, Mo K α ($\lambda = 0.71073$ Å), total reflections collected = 14.773, unique reflections = 4988 ($R_{int} = 0.0234$), absorption coefficient $\mu = 0.562$ mm⁻¹, final *R* indices $R_1 = 0.0301$, $wR_2 = 0.0750$.
- (6) Qian, B.; Ward, D. L.; Smith, M. R., III. Organometallics 1998, 17, 3070. Stender, M.; Eichler, B. E.; Hardman, N. J.; Power, P. P.; Prust, J.; Noltemeyer, M.; Roesky, H. W. Inorg. Chem. 2001, 40, 2794. (7)
- Akitt, J. W. In *Multinuclear NMR*; Mason, J., Ed.; Plenum Press: New (8)
- York, 1987; Chapter 9. (9) Kuhn, N.; Kuhn, A.; Lewandowski, J.; Speis, M. Chem. Ber. 1991, 124, 2197
- (10) Cowley, A. H.; Lu, Z.; Jones, J. N.; Moore, J. A. J. Organomet. Chem. 2004. 689. 2262
- (a) Weber, L.; Dobbert, E.; Stammler, H.-G.; Neumann, B.; Boese, R.; (11)Bläser, D. Chem. Ber. 1997, 130, 705. (b) Weber, L.; Schnieder, M.; Stammler, H.-G.; Neumann, B.; Schoeller, W. W. Eur. J. Inorg. Chem. 1999. 1193.
- (12) Neculai, D.; Roesky, H. W.; Neculai, A. M.; Magull, J. M.; Walfort, B.; Stalke, D. Angew. Chem., Int. Ed. 2002, 41, 4294.

JA0507564