Communication

Synthesis and Characterization of a Coordinated Oxoborane: Lewis Acid Stabilization of a Boron-Oxygen Double Bond

Dragoslav Vidovic, Jennifer A. Moore, Jamie N. Jones, and Alan H. Cowley
J. Am. Chem. Soc., 2005, 127 (13), 4566-4567• DOI: 10.1021/ja0507564 • Publication Date (Web): 11 March 2005

Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 10 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Synthesis and Characterization of a Coordinated Oxoborane: Lewis Acid Stabilization of a Boron-Oxygen Double Bond

Dragoslav Vidovic, Jennifer A. Moore, Jamie N. Jones, and Alan H. Cowley*
Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-0165

Received February 4, 2005; E-mail: cowley@mail.utexas.edu

Despite the use of bulky aryl, ${ }^{1}$ amido, ${ }^{2}$ or alkyl ${ }^{3}$ substituents, oxoboranes $(\mathrm{RB}=\mathrm{O})$ have so far defied attempts at isolation and structural characterization. Convincing evidence has, however, been presented for the intermediacy of such species on the basis of a variety of elegant trapping experiments. We report the first synthesis and structural assay of a Lewis acid-stabilized oxoborane.

In the aforementioned experiments, the fate of the ephemeral oxoboranes in the absence of trapping agents was oligomerization ${ }^{1 a, c, 2,3}$ or insertion of the oxoborane oxygen atom into a $\mathrm{C}-\mathrm{H}$ bond of the R ligand. ${ }^{1 \mathrm{~b}, 3}$ To obviate the possibility of a $\mathrm{C}-\mathrm{H}$ insertion and minimize the opportunity for oligomerization, we selected the $\mathrm{C}_{6} \mathrm{~F}_{5^{-}}$ substituted β-diketiminate $\left[\mathrm{HC}(\mathrm{CMe})_{2}\left(\mathrm{NC}_{6} \mathrm{~F}_{5}\right)_{2}\right]^{-}\left(\mathrm{L}^{-}\right)^{4}$ as the supporting ligand. As summarized in Scheme 1, treatment of the

Scheme 1

protonated ligand, LH , with MeAlCl_{2} resulted in a high yield (82.9%) of $\mathrm{LAlCl}_{2}(\mathbf{1})$, which was characterized by HRMS, NMR, and single-crystal X-ray diffraction. ${ }^{5}$ Only two (β-diketiminato)AlCl_{2} complexes have been structurally characterized previously, namely, $\left[\mathrm{HC}(\mathrm{CMe})_{2}(p \text {-tolyl })_{2}\right] \mathrm{AlCl}_{2}{ }^{6}$ and $\left[\mathrm{HC}(\mathrm{CMe})_{2}(N-2,6-i-\right.$ $\left.\left.\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2}\right] \mathrm{AlCl}_{2} .{ }^{7}$ The structure of $\mathbf{1}$ bears a closer resemblance to that of the former in the sense that the $\mathrm{C}_{3} \mathrm{~N}_{2}$ ring is planar. Compound $\mathbf{1}$ undergoes an exchange-autoionization reaction with BCl_{3} to afford the salt $[\mathrm{LBCl}]\left[\mathrm{AlCl}_{4}\right]$ (2) in 94.9% yield. This salt is highly water-sensitive, and characterization is based on HRMS of the cation $[\mathrm{LBCl}]^{+}$and multinuclear NMR of the salt. Thus, the characteristic peak ${ }^{8}$ for $\left[\mathrm{AlCl}_{4}\right]^{-}$was detected at $\delta 102.3$ in the ${ }^{27} \mathrm{Al}$ NMR spectrum, and the ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra are consistent with those anticipated for the β-diketiminato ligand L^{-}. The ${ }^{11} \mathrm{~B}$ chemical shift of $\delta 18.7$ is similar to the values of $\delta 23.05$ and 32.16 reported by Kuhn et al. ${ }^{9}$ for $\left[\mathrm{L}^{\prime \prime} \mathrm{BF}\right]\left[\mathrm{BF}_{4}\right]$ and $\left[\mathrm{L}^{\prime \prime} \mathrm{BCl}\right]\left[\mathrm{AlCl}_{4}\right]$,

Figure 1. ORTEP drawing for $\mathrm{LBO} \rightarrow \mathrm{AlCl}_{3}$ (thermal ellipsoids set at 30%). Selected distances $[\AA]$ and angles [${ }^{\circ}$]: $\mathrm{B}(1)-\mathrm{O}(1) 1.304(2), \mathrm{O}(1)-$ $\mathrm{Al}(1) 1.720(1), \mathrm{B}(1)-\mathrm{N}(1) 1.466(2), \mathrm{N}(1)-\mathrm{C}(4) 1.356(2), \mathrm{C}(4)-\mathrm{C}(3) 1.388-$ (2), $\mathrm{C}(3)-\mathrm{C}(2) 1.386(2), \mathrm{C}(2)-\mathrm{N}(2) 1.362(2), \mathrm{N}(2)-\mathrm{B}(1) 1.470(2), \mathrm{B}(1)-$ $\mathrm{O}(1)-\mathrm{Al}(1) 169.2(1), \mathrm{Cl}(1)-\mathrm{Al}(1)-\mathrm{Cl}(2) 112.97(3), \mathrm{Cl}(1)-\mathrm{Al}(1)-\mathrm{Cl}(3)$ $110.39(4), \mathrm{Cl}(2)-\mathrm{Al}(1)-\mathrm{Cl}(3) 108.34(3), 123.2(1), \mathrm{O}(1)-\mathrm{B}(1)-\mathrm{N}(2) 122.8-$ (1), $\mathrm{B}(1)-\mathrm{O}(1)-\mathrm{Al}(1) 169.2(1), \mathrm{B}(1)-\mathrm{N}(1)-\mathrm{C}(4) 123.9(2), \mathrm{N}(1)-\mathrm{C}(4)-$ $\mathrm{C}(3) 118.5(1), \mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2) 123.2(1), \mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(2) 119.1(1)$, $\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{B}(1) 122.1(5)$.
respectively $\left(\mathrm{L}^{\prime \prime}=\left[\mathrm{HC}(\mathrm{CMe})_{2}(\mathrm{NMe})_{2}\right]^{-}\right)$. Further support for the proposed formulation for $\mathbf{2}$ stems from the observation that $\mathbf{1}$ reacts with PhBCl_{2} to form $[\mathrm{LBPh}]\left[\mathrm{AlCl}_{4}\right]$ (4), which has been structurally authenticated ${ }^{5}$ and shown to possess a similar cationic structure to that of $\left[\mathrm{HC}(\mathrm{CMe})_{2}\left(N-2,6-i-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2} \mathrm{BPh}\right]\left[\mathrm{Al}_{2} \mathrm{Cl}_{7}\right](5) .{ }^{10}$ Treatment of $\mathbf{2}$ with the stoichiometric quantity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ results in the formation of $\mathbf{6}$, the AlCl_{3} adduct of the oxoborane $\mathrm{LB}=\mathrm{O}$. Compound $\mathbf{6}$ has been characterized by HRMS, NMR, and singlecrystal X-ray diffraction. ${ }^{5}$ The X-ray data confirm the spectroscopic indications and reveal the attachment of AlCl_{3} to the oxygen atom of the oxoborane (Figure 1). The $\mathrm{B}-\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(2)$ ring is planar, as reflected by the fact that the sum of internal bond angles is $719.9(1)^{\circ}$. The average $\mathrm{N}-\mathrm{C}(1.359(2) \AA$) and $\mathrm{C}-\mathrm{C}$ (1.387(2) $\AA)$ bond lengths are very similar to those in the boron cation $\mathbf{4}^{+}\left(1.369(9)\right.$ and $1.385(10) \AA$, respectively). ${ }^{10}$ However, the $\mathrm{B}-\mathrm{N}$ bond length in $\mathbf{6}(1.468(2) \AA$) is slightly longer than that in $4^{+}(1.440(9) \AA)$, as might be expected on the basis of the presence of a formal +1 charge on boron in the latter. The trigonal planar geometry at boron is indicated by the sum of angles at this center $\left(360.0(1)^{\circ}\right)$. The $\mathrm{B}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Al}$ bond lengths are 1.304(2) and $1.720(1) \AA$, respectively. It is difficult to make an assessment of the boron-oxygen bond order solely on the basis of length because examination of the Cambridge Crystallographic Data Base reveals that there is a pronounced dependence on the stereoelectronic characteristics of the other boron substituents. The $\mathrm{B}-\mathrm{O}$ separations in singly bonded $\mathrm{N}_{2} \mathrm{~B}-\mathrm{O}$ fragments (diaza- and triazaboroles) ${ }^{11}$ span the range of $1.354(5)-1.365(4) \AA$ and are thus considerably longer than that in 6. The $\mathrm{B}-\mathrm{O}-\mathrm{Al}$ angle in $6\left(169.2(1)^{\circ}\right)$ is

Figure 2. Selected MOs for $\mathrm{LBO} \rightarrow \mathrm{AlCl}_{3}$ (6') and LBO (7).
comparable to the value of $163.76(2)^{\circ}$ reported by Roesky et al. ${ }^{12}$ for the interesting monoalumoxane $\mathrm{L}^{\prime} \mathrm{AlO} \rightarrow \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~L}^{\prime}=\right.$ $\left.\left.\left[\mathrm{HC}(\mathrm{CMe})_{2}\left(\mathrm{NCH}_{2} \mathrm{NEt}\right)_{2}\right)_{2}\right]^{-}\right)$, which features a four-coordinate aluminum atom.

To gain more insight into the electronic structure of $\mathbf{6}$, in general, and the nature of the boron-oxygen bond, in particular, DFT calculations were carried out at the B3LYP level of theory using the $6-311+G(d)$ basis set. The input coordinates for the geometry optimization were generated from the X-ray crystallographic data. The resulting structure ($\mathbf{6}^{\prime}$) is shown in Scheme 2. Analogous

Scheme 2

calculations were performed on $\mathrm{LB}=\mathrm{O}$ (7) and are included in Scheme 2. Reference to Scheme 2 and the Figure 1 caption reveals that the computed metrical parameters for $\mathbf{6}^{\prime}$ lie within 1% of the experimental values for $\mathbf{6}$, with the exception of the $\mathrm{O}-\mathrm{Al}$ distance and the $\mathrm{B}-\mathrm{O}-\mathrm{Al}$ angle for which the deviations are 2.8 and 2.9%, respectively. Regarding the latter deviation, the DFT calculations indicate that the $\mathrm{B}-\mathrm{O}-\mathrm{Al}$ angle deformation energy is small and
that, for example, the difference in energy between $\angle \mathrm{B}-\mathrm{O}-\mathrm{Al}=$ 174.11 and 180.0° is only $0.72 \mathrm{kcal} / \mathrm{mol}$. In terms of the $\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{~B}$ ring geometry, the major changes that take place when AlCl_{3} is coordinated to the oxoborane 7 are widening of the $\mathrm{B}-\mathrm{N}-\mathrm{C}$ angle and narrowing of the $\mathrm{N}-\mathrm{B}-\mathrm{N}$ angle. The $\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{~B}$ rings of 6^{\prime} and 7 are both planar. The computed $\mathrm{B}-\mathrm{O}$ distance for the free oxoborane 7 is $1.292 \AA$, and the fact that this distance increased by only 1.9% upon coordination to AlCl_{3} is suggestive of the retention of considerable double bond character in $\mathbf{6}^{\prime}$. For both $\mathbf{6}^{\prime}$ and 7 , the LUMO is π^{*} in nature (Figure 2). The HOMO of $\mathbf{6}^{\prime}$ comprises the AlCl_{3} chlorine lone pairs, while that of 7 is principally oxygen lone pair in character. The HOMO-LUMO gaps for $\mathbf{6}^{\prime}$ and $\mathbf{7}$ are 83.38 and $91.18 \mathrm{kcal} / \mathrm{mol}$, respectively. The $\mathrm{B}-\mathrm{O} \pi$ bond in 7 is evident in the HOMO-6 orbital (but note that there is also considerable participation by nitrogen 2 p orbitals). In the case of $\mathbf{6}^{\prime}$, the π component of the $\mathrm{B}-\mathrm{O}$ bond does not feature contributions from these nitrogen $2 p$ orbitals.

In summary, we have prepared and structurally characterized the first example of a Lewis acid-coordinated oxoborane. DFT calculations indicate that the boron-oxygen functionality of this complex retains considerable double bond character.

Acknowledgment. We are grateful to the National Science Foundation (CHE-0240008) for support.

Supporting Information Available: Experimental details, spectroscopic data for 1, 2, and 6, X-ray crystallographic data (CIF) for 1, 4 , and $\mathbf{6}$, and DFT calculation details for 6^{\prime} and 7. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Pachaly, B.; West, R. J. Am. Chem. Soc. 1985, 107, 2987. (b) Groteklaes, M.; Paetzold, P. Chem. Ber. 1988, 121, 809. (c) Ito, M.; Tokitoh, N.; Okazaki, R. Tetrahedron Lett. 1997, 38, 4451. (d) Tokitoh, N. Main Group Chem. News 2000, 7, 27.
(2) Hanecker, E.; Nöth, H.; Weitelmann, U. Chem. Ber. 1986, 119, 1904.
(3) Paetzold, P.; Neyses, S.; Géret, L. Z. Anorg. Allg. Chem. 1995, 621, 723.
(4) Panda, A.; Stender, M.; Wright, R. J.; Olmstead, M. M.; Klavins, P.; Power, P. P. Inorg. Chem. 2002, 41, 3909.
(5) All X-ray data were collected at 153 K on a Nonius-Kappa CCD diffractometer. Crystal data for 1: $\mathrm{C}_{17} \mathrm{H}_{7} \mathrm{AlCl}_{2} \mathrm{~F}_{10} \mathrm{~N}_{2}$, monoclinic space $\operatorname{group} P 2_{1 / c}, a=11.224(5) \AA, b=14.411(5) \AA, c=12.659(9) \AA, \beta=$ $103.275(5)^{\circ}, V=1992.9(1) \AA^{3}, Z=4, \rho_{\text {calcd }}=1.757 \mathrm{~g} \mathrm{~cm}^{-3}, 2 \theta_{\max }=$ 54.96°, Mo $\mathrm{K} \alpha(\lambda=0.71073 \AA)$, total reflections collected $=7904$, unique reflections $=4525\left(R_{\mathrm{int}}=0.080\right)$, absorption coefficient $\mu=0.469 \mathrm{~mm}^{-1}$, final R indices $R_{1}=0.0776, w R_{2}=0.1549$. Crystal data for 4: $\mathrm{C}_{23} \mathrm{H}_{12^{-}}$ AlBCl ${ }_{4} \mathrm{~F}_{10} \mathrm{~N}_{2}$, orthorhombic, space group Pnma, $a=25.588$ (5) $\AA, b=$ $15.086(3) \AA, c=7.155(1) \AA, V=2762.1(9) \AA \AA^{3}, Z=4, \rho_{\text {calcd }}=1.650 \mathrm{~g}$ $\mathrm{cm}^{-3}, 2 \theta_{\max }=59.96^{\circ}$, Mo $\mathrm{K} \alpha(\lambda=0.71073 \AA)$, total reflections collected $=5628$, unique reflections $=3187\left(R_{\text {int }}=0.2017\right)$, absorption coefficient $\mu=0.547 \mathrm{~mm}^{-1}$, final R indices $R_{1}=0.0848$, $w R_{2}=0.2134$. Crystal data for 6: $\mathrm{C}_{17} \mathrm{H}_{7} \mathrm{AlBCl}_{3} \mathrm{~F}_{10} \mathrm{~N}_{2} \mathrm{O}$, monoclinic space group $\mathrm{P} 2_{1 / c}, a=$ $11.110(5) \AA, b=13.318(5) \AA, c=15.211(5) \AA, \beta=104.744(5)^{\circ}, V=$ $2176.6(1) \AA^{3}, Z=4, \rho_{\text {calcd }}=1.799 \mathrm{~g} \mathrm{~cm}^{-3}, 2 \theta_{\max }=55^{\circ}$, Mo K $\alpha(\lambda=$ $0.71073 \AA)$, total reflections collected $=14773$, unique reflections $=$ $4988\left(R_{\mathrm{int}}=0.0234\right)$, absorption coefficient $\mu=0.562 \mathrm{~mm}^{-1}$, final R indices $R_{1}=0.0301$, $w R_{2}=0.0750$.
(6) Qian, B.; Ward, D. L.; Smith, M. R., III. Organometallics 1998, 17, 3070.
(7) Stender, M.; Eichler, B. E.; Hardman, N. J.; Power, P. P.; Prust, J.; Noltemeyer, M.; Roesky, H. W. Inorg. Chem. 2001, 40, 2794.
(8) Akitt, J. W. In Multinuclear NMR; Mason, J., Ed.; Plenum Press: New York, 1987; Chapter 9.
(9) Kuhn, N.; Kuhn, A.; Lewandowski, J.; Speis, M. Chem. Ber. 1991, 124, 2197.
(10) Cowley, A. H.; Lu, Z.; Jones, J. N.; Moore, J. A. J. Organomet. Chem. 2004, 689, 2262.
(11) (a) Weber, L.; Dobbert, E.; Stammler, H.-G.; Neumann, B.; Boese, R.; Bläser, D. Chem. Ber. 1997, 130, 705. (b) Weber, L.; Schnieder, M.; Stammler, H.-G.; Neumann, B.; Schoeller, W. W. Eur. J. Inorg. Chem. 1999, 1193.
(12) Neculai, D.; Roesky, H. W.; Neculai, A. M.; Magull, J. M.; Walfort, B.; Stalke, D. Angew. Chem., Int. Ed. 2002, 41, 4294.
JA0507564

